# A physiological effective connectome of the human brain, based on intracranial electrical stimulation

Cristian Donos<sup>1</sup>, Mihai Maliia<sup>2</sup>, Ioana Mindruta<sup>2,3</sup>, Jean Ciurea<sup>4</sup>, Laura Craciun<sup>2</sup>, Andrei Barborica<sup>1,5</sup>

<sup>1</sup>Physics Department, University of Bucharest, Bucharest, Romania, <sup>2</sup>Neurology Department, University Emergency Hospital, Bucharest, Romania,

y Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania, <sup>4</sup>Neurosurgery Department, Bagdasar-Arseni Hospital, Bucharest, Romania, <sup>5</sup>FHC Inc, Bowdoin ME, USA

#### Introduction

Several MRI and DTI methods already delivered a whole brain structural connectome [1], however none of them are able to directly probe the causal functional (*effective*) brain connectivity using native electrical signaling. The study of cortico-cortical evoked potentials using high-density stereoelectroencephalographic (SEEC) recordings represents perhaps the most direct way of exploring brain connectivity. However, SEEG investigations are limited to the patients with drug-resistant epilepsy, which may present disrupted connectivity patterns [2,3]. In order to dissociate pathological from physiological connectivity, we propose a method that combines individual patient's connectivity with saliency maps and epileptogenicity of the cortical areas calculated retrospectively on a larger patient dataset. Methods

24 patients with refractory epilepsy (Table 1) were implanted with depth electrodes for presurgical evaluation. Single pulse electrical stimulation, using biphasic pulses with 3ms pulse duration and current intensity in the 0.25-5mA range was applied to each pair of adjacent contacts and responses evoked by stimulation were recorded from other contacts located in remote brain areas. We calculated the RMS value over the 10-110 ms interval after each stimulation current (Spearman's r-0.5, p-0.05) and the mean RMS value across all stimulation pulses in a trial is higher than the 3rd quartile value (O3) of all the responses recorded within a patient [4]. Responses from the activated contacts were weighted by the epilepogencity of each area and averaged for each patient. Further weighting was performed by calculating the saliency of each non-pathological connection in the patient database. We use the terms "inbound" and "outbound" to illustrate the connections ending on and starting from each brain furure transmitter to the saliency of each area and surged provide the terms "inbound" and "outbound" to illustrate the connections ending on and starting from each brain tructure respective.

| Patient | Sex | An | Eelkesy        | Lateralization | Localization                              | Pathology                            | MRILesion                                                                  | Number of        | Number of | RMS Q3 | Surgical   |
|---------|-----|----|----------------|----------------|-------------------------------------------|--------------------------------------|----------------------------------------------------------------------------|------------------|-----------|--------|------------|
| 1       | F   | 17 | Emotal         | Left           | Promotor demolatoral                      | Type II BECD                         | Nonativo                                                                   | electrodes<br>11 | 104       | 95.8   | Ennel IIIB |
| 2       | м   | 39 | Occipital      | Left           | Occipito-temporal<br>basal                | Polimycrogyria                       | MCD                                                                        | 16               | 194       | 61.3   | Engel IA   |
| 3       | м   | 47 | Temporal       | Left           | Middle temporal gyrus                     | DNET                                 | DNET                                                                       | 11               | 101       | 87.7   | Engel II   |
| 4       | F   | 40 | Prefrontal     | Left           | Prefrontal                                | Type II BFCD                         | Type II BFCD                                                               | 11               | 141       | 89.6   | Engel IA   |
| 5       | F   | 35 | Mesio-temporal | Right          | Amygdala                                  | Temporal scierosis                   | Negative                                                                   | 12               | 160       | 56.4   | Engel IIB  |
| 6       | F   | 24 | Fronto-central | Right          | Rolandic                                  | Type II A FCD                        | Type II FCD                                                                | 15               | 138       | 63.9   | Engel IB   |
| 7       | м   | 24 | Occipital      | Right          | Occipito-temporal<br>basal                | Type I FCD                           | MCD                                                                        | 14               | 157       | 25.3   | Engel IIIB |
| 8       | F   | 25 | Temporal       | Right          | Amygdala                                  | Type I FCD                           | Type II FCD                                                                | 10               | 111       | 62.5   | Engel IIB  |
| •       | F   | 46 | Temporal       | Right          | Temporal pole                             | Type II BFCD                         | Type II FCD                                                                | 9                | 102       | 106.5  | Engel IIIB |
| 10      | м   | 33 | Frontal        | Left           | Mesial prefrontal                         | Type I B FCD                         | Type I FCD                                                                 | 17               | 174       | 48.4   | Engel IA   |
| 11      | F   | 11 | Frontal        | Right          | Mesial and lateral<br>premotor            | Type II A FCD                        | Misleading-type II B - like<br>FCD in temporal<br>operculum                |                  | 183       | 77.7   | Engel IA   |
| 12      | F   | 9  | Frontal        | Right          | Lateral prefrontal                        | Type II A FCD                        | Type II FCD                                                                | 13               | 180       | 54.8   | Engel IC   |
| 13      | F   | 35 | Frontal        | Right          | Middle cingulate                          | Not available<br>(thermocoagulation) | Negative                                                                   | 14               | 169       | 48.2   | Engel IA   |
| 14      | м   | 28 | Temporal       | Right          | Temporal                                  | Type I FCD                           | Type I FCD                                                                 | 17               | 188       | 52.1   | Engel IA   |
| 15      | F   | 25 | Bitemporal     | Bilateral      | Bitemporal                                | Type I FCD                           | Negative                                                                   | 17               | 219       | 51.8   | Engel IB   |
| 16      | F   | 36 | Opercular      | Right          | Parietal-temporal,<br>posterior operculum | Type II BFCD                         | Type II FCD                                                                | 15               | 205       | 91.4   | Engel IA   |
| 17      | F   | 42 | Temporal plus  | Right          | Temporal pole and<br>temporo-mesial       | Type I FCD                           | Hippocampal atrophy                                                        | 14               | 205       | 72.1   | Engel IA   |
| 18      | F   | 37 | Temporal       | Left           | Temporal pole and<br>temporo-mesial       | Type IIA FCD                         | Negative                                                                   | 13               | 160       | 43.6   | Engel IA   |
| 19      | M   | 26 | Occipital      | Bilatoral      | Bioccipital                               | Not operated on                      | Negative                                                                   | 14               | 211       | 73.3   |            |
| 20      | м   | 53 | Frontal        | Left           | Frontal pole                              | Cavamorna                            | Multiple cavernomas                                                        | 11               | 166       | 30.2   | Engel IA   |
| 21      | м   | 39 | Bitemporal     | Bilateral      | Bitemporal                                | Not operated on                      | Negative                                                                   | 11               | 167       | 44.9   |            |
| 22      | F   | 42 | Temporal       | Left           | Temporal                                  | Not available                        | Hippocampal atrophy<br>and left superior<br>temporal gyrus<br>malformation | 11               | 147       | 58.8   | Engel IA   |
| 23      | м   | 42 | Mesio-Temporal | Left           | Occipito-temporo<br>basal                 | Type II A FCD                        | Left hippocampal<br>scierosis and superior<br>temporal gyrus dysplasia     | 14               | 194       | 65.2   | Engel IB   |
| 24      | M   | 29 | Emotal         | Right          | Premotor                                  | Type II BFCD                         | Type II BFCD                                                               | 9                | 112       | 72     | Engel IA   |

### Table 1. Patients participating in our study.

The directionality of the connections between a pair of structures (A, B) is evidenced by the asymmetry in responses  $R_{A \to B}$ ,  $R_{B \to A}$  to sequential stimulation of each structure. A directionality factor  $DF_{A+B}$  has been defined as:

$$DF_{A \leftrightarrow B} = \left| \frac{R_{A \rightarrow B} - R_{B \rightarrow A}}{R_{A \rightarrow B} + R_{B \rightarrow A}} \right|$$



Table 2. List of all structures implanted in our patient lot.

## Results

Over the 24 patient set, we have inserted a total of 13  $\pm$  2.5 depth electrodes, probed 609 sites using electrical stimulation and recorded 36980 responses in 1481 locations. A number of 9448 (25.5%) recorded responses met our amplitude and correlation with stimulus criteria and were used for calculating the physiological effective connectome (Figure 1).

The physiological effective connectome contains 70 brain structures from both hemispheres and has a mean directionality factor (DF)  $\pm$  SD of 0.63  $\pm$  0.40.



Figure 1. The physiological effective connectome. a) 2D representation as an adjacency matrix, in which the normalized responses between two structures are color-coded. b),(d) Avial, coronal, and sagital views of the 3D frustums representation. For each connection, the large base of the frustum, whose radius is directly proportional with the normalized RMS response, indicate the stimulation structure, while the small base indicate the structure in which the response was recorded.

The effective connectivity of 8 brain structures relevant to temporal lobe epilepsy is shown in Figure 2.

P 0501



Figure 2. The physiological effective connectivity of temporal lobe structures in 3D frustums representation. a) amygdala, b) hippocampus, c) temporal pole, d) inferior temporal gyrus, e) middle temporal gyrus, f) parahippocampalgyrus, g) lingualgyrus, h) fusiform gyrus.

### Conclusions

Using direct electrical stimulation, we obtained a physiological effective connectome covering a 70 brain structures from both hemispheres.

There was a significant directionality in the functional connections between structures.

This data can be used as reference tool for planning the SEEG implantations and for differential analysis of altered versus normal brain connectivity in epileptic patients.

### Acknowledgments

Supported by Romanian government UEFISCDI research grant PN-II-ID-PCE-2011-3-0240

#### References

- 1. Yeh FC, Tseng WY. NTU-90: a high angular resolution brain atlas constructed by q-space diffeomorphic reconstruction. Neuroimage. 2011 Sep 1; 58(1):91-9.
- Lee HW, Arora J, Papademetris X, Tokoglu F, Negishi M, Scheinost D, Farooque P, Blumenfeld H, Spencer DD, Constable RT. Altered functional connectivity in seizure onset zones revealed by fMRI intrinsic connectivity. Neurology. 2014 Dec 9: 83(24):2269-77.
- Liao W, Zhang Z, Pan Z, Mantini D, Ding J, Duan X, Luo C, Lu G, Chen H. Altered functional connectivity and smallworld in mesial temporal lobe epilepsy. PLoS One. 2010 Jan 8;5(1):e8525.
- Donos C, Mindrută İ, Ciurea J, Măliia MD, Barborica A. A comparative study of the effects of pulse parameters for intracranial direct electrical stimulation in epilepsy. Clin Neurophysiol. 2015 Mar 2. pii: S1388-2457(15)00118-2.