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lObjectives ResultsObjectives
I i l di l i l i l i (DES) d i i l l h l i (SEEG) l i f i i h d i

We have recorded to date 20 neurons in SOZ and adjacent areas. We were able to find several firing patterns in response to electrical stimulation: no‐ Considering that a network effect may be underlying timelocking facilitation, it may be possible that such neurons are involved in driving specific LFP/EEG
Intracranial direct electrical stimulation (DES) during presurgical stereoelectroencephalograpic (SEEG) evaluation of patients with drug‐resistent
epilepsy is a powerful method for mapping the epileptogenicity of various brain areas

change (‐0.25 < MISTIM< 0.25), enhancement (MISTIM > 0.25) or suppression (MISTIM < ‐0.25), as shown in tables 2 and 3. The modulation is highly responses hypothesized to be the result of pathological recurrent connectivity, like delayed responses (Valentin et al., 2002) and high‐frequency oscillations (HFO,
) ( ) ( )epilepsy is a powerful method for mapping the epileptogenicity of various brain areas.

In order to elucidate the basic neural mechanisms underlying electrographic responses to DES our main objective is to investigate human single unit
dependent on the stimulation frequency and pathology: 13 out of 14 neurons in SOZ exhibited suppression or enhancement at 30 Hz, compared to 4
out of 6 neurons outside SOZ A buildup of the firing rate over the stimulation duration was observed in 12 (85 7%) of the SOZ neurons and 4 (66 6%)

f > 80Hz) (van’t Klooster et al, 2011). Such possible correlations are exemplified in figure 4 (lower panels), where delayed HFOs appear to have similar timing as
single unit activity (upper panels) recorded in the same cortical area of patient 10 (cortical dysplasia)In order to elucidate the basic neural mechanisms underlying electrographic responses to DES, our main objective is to investigate human single unit

firing during intraoperative DES of epileptogenic areas for different stimulation amplitudes and frequencies.
out of 6 neurons outside SOZ. A buildup of the firing rate over the stimulation duration was observed in 12 (85.7%) of the SOZ neurons and 4 (66.6%)
of the non‐SOZ neurons at 30 Hz. Stimulation frequency above 30 Hz had a relative suppressive effect on the neuronal firing.

single‐unit activity (upper panels) recorded in the same cortical area of patient 10 (cortical dysplasia).
firing during intraoperative DES of epileptogenic areas for different stimulation amplitudes and frequencies.

The specific aims of this study are:

of the non SOZ neurons at 30 Hz. Stimulation frequency above 30 Hz had a relative suppressive effect on the neuronal firing.
Single Unit Statistics

1 H  0 5 A 10 H  0 5 A 30 H  0 5 A 60 H  0 5 AThe specific aims of this study are:

1 Compare the single‐unit activity of neurons in epileptogenic and normal cortical areas
Stim epoch enhancement/suppression index

All frequencies 1 Hz 10 Hz 30 Hz 60 Hz
All 0 08±0 49 78 0 09±0 47 20 0 03±0 39 20 0 20±0 55 20 0 07±0 55 18a

1 Hz, 0.5 mA 10 Hz, 0.5 mA 30 Hz, 0.5 mA 60 Hz, 0.5 mA

c1. Compare the single‐unit activity of neurons in epileptogenic and normal cortical areas.

2 Evaluate the effect of the frequency of the stimulation pulses on the firing patterns and rates

All neurons 0.08±0.49, n=78 0.09±0.47, n=20 ‐0.03±0.39, n=20 0.20±0.55, n=20 0.07±0.55, n=18
SOZ 0.08±0.51, n=55 0.06±0.46, n=14 ‐0.09±0.36, n=14 0.20±0.59, n=14 0.15±0.61, n=13
non‐SOZ 0 09±0 46 n=23 0 16±0 54 n=6 0 11±0 46 n=6 0 19±0 50 n=6 ‐0 14±0 33 n=5

a c
2. Evaluate the effect of the frequency of the stimulation pulses on the firing patterns and rates.

3 Evaluate the time course of the firing rate during stimulation Activity changes during stimulation have been shown to be associated with

non‐SOZ 0.09±0.46, n=23 0.16±0.54, n=6 0.11±0.46, n=6 0.19±0.50, n=6 0.14±0.33, n=5
n‐way anova analysis
Factor p

3. Evaluate the time course of the firing rate during stimulation. Activity changes during stimulation have been shown to be associated with
increased plasticity in the epileptogenic areas (David et al ., 2007) Table 1. N‐way ANOVA analysis on single units data. The results show that only the patient selection had

p
Patient 0.0107
Pathology 0.1058increased plasticity in the epileptogenic areas (David et al ., 2007)

4 Evaluate the entrainment of the neuronal activity by the stimulation pulses
a significant effect (p<0.05) on the stimulation epoch enhancement/suppression index. All three factors
(patients selection pathology and stimulation frequency) had significant effect (p<0 05) on the

Frequency 0.4707

Timelockin inde4. Evaluate the entrainment of the neuronal activity by the stimulation pulses.

5 Correlate biomarkers of the epileptogenic zone identified in the EEG responses evoked by single‐pulse stimulation with the single‐unit firing

(patients selection, pathology and stimulation frequency) had significant effect (p<0.05) on the
timelocking index. In the case of stimulation epoch buildup index, none of the three factors showed a

Timelocking index
All frequencies 1 Hz 10 Hz 30 Hz 60 Hz

All neurons 0 16±0 42 n=78 ‐0 09±0 25 n=20 0 26±0 53 n=20 0 27±0 46 n=20 0 20±0 29 n=185. Correlate biomarkers of the epileptogenic zone identified in the EEG responses evoked by single‐pulse stimulation with the single‐unit firing
patterns. These include delayed responses (Valentin et al, 2002), high‐frequency oscillations (van’t Klooster 2010).

significant effect (p<0.05).
All neurons 0.16±0.42, n 78 0.09±0.25, n 20 0.26±0.53, n 20 0.27±0.46, n 20 0.20±0.29, n 18
SOZ 0.22±0.48, n=55 ‐0.12±0.29, n=14 0.34±0.61, n=14 0.38±0.51, n=14 0.28±0.29, n=13
non‐SOZ 0.01±0.11, n=23 ‐0.02±0.11, n=6 0.05±0.05, n=6 0.03±0.13, n=6 ‐0.02±0.15, n=5p y p ( , ), g q y ( )
n‐way anova analysis
Factor pb 80 80 80 80
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Methods
Patient 0.0001
Pathology 0.0168
Frequency 0 0024

b 80 80 80 80

Methods
We performed SEEG presurgical evaluation of 11 patients with drug‐resistant focal epilepsy to locate the seizure‐onset zone (SOZ) and delineate the

Frequency 0.0024

Stim epoch buildup index

60
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We performed SEEG presurgical evaluation of 11 patients with drug resistant focal epilepsy to locate the seizure onset zone (SOZ) and delineate the
area to be resected.

Stim epoch buildup index
All frequencies 1 Hz 10 Hz 30 Hz 60 Hz

All neurons ‐0.09±0.38, n=78 0.02±0.38, n=20 ‐0.07±0.29, n=20 ‐0.16±0.26, n=20 ‐0.18±0.54, n=1840
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Patient Sex Age Pathology Epilepsy SOZ
1 F 32 Type I cortical dysplasia Temporal Mesial structures Fi 1 A t i l t d

SOZ ‐0.14±0.40, n=55 ‐0.03±0.33, n=14 ‐0.13±0.31, n=14 ‐0.16±0.28, n=14 ‐0.25±0.62, n=13
non‐SOZ 0.02±0.30, n=23 0.15±0.47, n=6 0.05±0.21, n=6 ‐0.15±0.22, n=6 0.01±0.18, n=5

1 F 32 Type I cortical dysplasia Temporal Mesial structures
2 M 46 Hippocampal sclerosis Mesio‐temporal Amygdala
3 M 39 MCD temporo occipital basal Occipital Basal

Figure 1. Acute microelectrode
recording setup using clinical

n‐way anova analysis
Factor p
Patient 0 20233 M 39 MCD temporo‐occipital basal Occipital Basal

4 M 47 DNET Temporal Middle temporal gyrus
5 F 40 T II B i l d l i P f l DLPFC

electrodes, stereotactic
positioning, stimulation and

Patient 0.2023
Pathology 0.1038
Frequency 0.3016

Figure 3 Illustration of a SOZ neuron highly modulated by the application of stimulation pulses in patient #5 (prefrontal cortical dysplasia) The

5 F 40 Type II B cortical dysplsia Prefrontal  DLPFC
6 F 35 Gliosis Mesio‐temporal Amygdala

positioning, stimulation and
recording instrumentation
commonly used for functional

q y

Frequency (Hz)Figure 3. Illustration of a SOZ neuron highly modulated by the application of stimulation pulses, in patient #5 (prefrontal cortical dysplasia). The
mean firing rate is little modified by the 1Hz stimulation (1.00 vs 1.70Hz), whereas at higher frequencies, it increases significantly to 2.57, 9.71

7 F 25 Type II cortical dysplasia Temporal Temporal pole
8 F 46 Type II cortical dysplasia Temporal Temporal pole

commonly used for functional
mapping in deep brain Pathology

Stim Epoch 
Pattern

Inter‐Pulse 
Pattern

1 10 30 60
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Baseline  Stim Epoch  Enhancement (+) 

Time‐
locking n
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Stim Epoch (Hz)

Enhancement (+) 
Time‐
locking n

Baseline  Stim Epoch  Enhancement(+) 
Time‐
locking n

Baseline  Stim Epoch  Enhancement(+) 
Time‐
lockingand 5.29 Hz for 10, 30 and 60 Hz, respectively. The higher firing rate is associated with increased time‐locking of ‐0.25, 0.47, 0.93, 0.93 for the

four stimulation frequencies
9 M 33 Type I cortical dysplasia Frontal Anterior cingulate cortex
10 M 28 Type I cortical dysplasia Temporal Hippocampus

stimulation procedures n
(Hz) (Hz) / Suppression(‐)

locking 
index

n
(Hz)

Stim Epoch (Hz)
/ Suppression(‐)

locking 
index

n
(Hz) (Hz) / Suppression(‐)

locking 
index

n
(Hz) (Hz) / Suppression(‐)

locking 
index

SOZ No‐change No‐change 3 4.6 4.5 0.7% 1.2% 1 13.6 11.9 ‐6.5% ‐5.6% 0 0four stimulation frequencies.

The entrainment of the neurons by stimulation pulses as reflected by the values of time locking index varies significantly with the stimulation

yp y p p pp p
11 F 25 N/A Temporal Entorhinal cortex

bl 1 i f i i l d d i hi d

SOZ No change No change 3 4.6 4.5 0.7% 1.2% 1 13.6 11.9 6.5% 5.6% 0 0
Time‐locked 1 6.3 5.0 ‐12.0% ‐17.2% 0 1 6.6 7.4 5.6% 62.2% 3 5.1 4.9 ‐2.8% 23.0%

Enhancement No‐change 2 0 2 4 5 66 7% ‐2 4% 1 2 1 2 9 15 8% ‐41 7% 3 1 2 5 0 61 5% 5 0% 3 2 8 9 1 74 9% 39 9%The entrainment of the neurons by stimulation pulses, as reflected by the values of time‐locking index varies significantly with the stimulation
frequency. Individual pulses, applied at low repetition rate, are not able to evoke neuronal responses. However, when applied in a faster succession,P i t th ti t t ti ll i ti th i l t d d 2 t i li fi ti f ll i

Table 1. List of patients included in this study Enhancement No‐change 2 0.2 4.5 66.7% ‐2.4% 1 2.1 2.9 15.8% ‐41.7% 3 1.2 5.0 61.5% 5.0% 3 2.8 9.1 74.9% 39.9%
Time‐locked 3 9.6 13.4 42.9% ‐16.8% 4 2.9 5.3 35.1% 65.5% 6 3.8 9.3 54.7% 65.1% 3 1.5 6.5 65.1% 27.7%

Suppression No change 5 8 8 4 0 33 3% 18 6% 3 11 6 4 9 31 2% 11 4% 2 6 4 0 9 75 8% 46 2% 2 4 2 1 6 59 0% 19 2%frequency. Individual pulses, applied at low repetition rate, are not able to evoke neuronal responses. However, when applied in a faster succession,
initial pulses in a train seem to be able to pre‐condition either individual neurons or the recurrent network connections, facilitating the response to

Prior to the resective surgery, we are stereotactically inserting three microelectrodes, spaced 2mm apart, in a linear configuration, following a
trajectory targeting SOZ Standard clinical microelectrodes and equipment used in functional mapping for deep brain stimulation implantations was

Suppression No‐change 5 8.8 4.0 ‐33.3% ‐18.6% 3 11.6 4.9 ‐31.2% 11.4% 2 6.4 0.9 ‐75.8% ‐46.2% 2 4.2 1.6 ‐59.0% 19.2%
Time‐locked 0 5 7.7 3.5 ‐35.8% 46.7% 2 8.7 3.5 ‐43.0% 74.9% 2 5.4 2.0 ‐46.8% 27.0%

B ild N h 7 6 3 5 0 8 1% 4 7% 2 15 5 6 1 36 8% 18 2% 5 3 2 3 3 6 6% 15 5% 4 2 2 3 0 17 0% 31 2%subsequent pulses.
trajectory targeting SOZ. Standard clinical microelectrodes and equipment used in functional mapping for deep brain stimulation implantations was
used. Bipolar electrical stimulation is applied in most cases between the two outer macro contacts of the electrodes, while recording the unit activity

Buildup No‐change 7 6.3 5.0 8.1% ‐4.7% 2 15.5 6.1 ‐36.8% 18.2% 5 3.2 3.3 6.6% ‐15.5% 4 2.2 3.0 17.0% 31.2%
Time‐locked 0 5 4.7 2.9 ‐6.0% 47.2% 7 4.3 6.4 29.5% 72.9% 7 3.4 4.6 14.0% 30.6%

% % % %
p pp , g y

on the center microelectrode, located 3 mm deeper than the macro contacts. Constant current 0.5 to 1 mA biphasic pulses, 0.3 ms pulse width,
Normal No‐change No‐change 1 1.3 1.2 ‐5.0% ‐2.5% 3 6.3 5.5 ‐5.5% 2.7% 0 0

Time‐locked 0 0 2 7.4 8.1 4.7% ‐5.2% 2 7.3 7.6 ‐0.1% ‐7.5%a b
frequency 1, 10, 30, 60 and 130 Hz were applied for 30 s using a clinical recording and stimulating system (Guideline LP+, FHC Inc, Bowdoin, ME). The
interval before between and after each electrical stimulation epoch was at least 30 seconds

Enhancement No‐change 4 3.6 8.1 41.8% ‐4.4% 2 0.6 3.7 61.6% 5.8% 3 1.1 3.7 54.1% 13.9% 1 2.0 3.2 22.4% 24.0%
Time‐locked 0 0 0 0

a
interval before, between and after each electrical stimulation epoch was at least 30 seconds.

d h l f d l h ( d ) dd h d d b

Suppression No‐change 1 1.6 0.3 ‐66.0% 8.0% 1 5.1 2.1 ‐41.1% 8.2% 1 3.4 0.9 ‐57.6% ‐14.0% 2 2.8 0.9 ‐45.8% ‐10.6%
Time‐locked 0 0 0 0

In order to remove the stimulation artifact, we used SALPA algorithm (Wagenaar and Potter, 2002). In addition, the noise introduced by connecting
the stimulator to the macro contacts used for stimulation has been removed by using an adaptive noise cancellation filter (Widrow 1975) using as

Buildup No‐change 5 2.2 5.1 16.0% ‐4.1% 3 3.2 3.4 8.1% 7.1% 3 1.5 1.5 16.8% 6.6% 2 3.1 2.1 ‐18.5% 5.0%
Time‐locked 0 0 1 7.6 8.1 3.3% ‐5.5% 0the stimulator to the macro contacts used for stimulation has been removed by using an adaptive noise cancellation filter (Widrow, 1975) using as

reference the signal on one of the other microelectrode. This was possible as the stimulator noise on all channels is originating from a single source, Table 2. Single‐unit classification based on pathology, stimulation epoch pattern and inter‐pulse pattern.d
Conclusions

g p g g g ,
therefore it is correlated across channels. Simultaneously sampled channels and built‐in stimulation unit sharing the same clock as the recording unit

d
Conclusionsresulted in a stimulation artifact without any pulse to pulse variability, therefore facilitating artifact removal (Hashimoto and Vitek, 2002). Spike

ti f d i FIND t lb (M i t l 2008)
c

• Time‐locking is associated with pathological cortex.sorting was performed using FIND toolbox (Meier et al., 2008).

Only frequencies of 10 Hz and above result in significant timelockingd
BASELINE

STIM
POSTSTIM PREPULSE POSTPULSE • Only frequencies of 10 Hz and above result in significant timelocking.d

BASELINE POSTSTIM
EARLY LATE

PREPULSE POSTPULSE

Time (s)

• Higher frequencies (30 Hz) have an excitatory effect, particularly in pathological tissue.
( )

g q ( ) y p y p g

Thi t d hi hli ht th fi i t ti f i l it i il t i t Th lt h i li ti
e f h i This study highlights the firing rate properties of single units in epileptogenic cortex. The results have implications

i d t di th b i h i d l i il t i t k d i d l ti th l

f i
in understanding the basic mechanisms underlying epileptogenic networks and in modulating the neuronal
ti it th h l t i l ti l tiactivity through electrical stimulation.a b cStim Off

IPI

A k l d t
a b cStim Off

Figure 2. Illustration of the recording while stimulating, stimulus artifact removal and spike discrimination. a) the 1‐Hz stimulation epoch recorded in patient 7 with
discriminated neurons highlighted in red b) a detail of the end of the stimulation epoch showing the raw signal (gray) and the filtered signal One has to note the
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